Math 270 Day 5 Part 2

Section 2.4: Exact Equations

What we'll go over in this section

- Preliminary Discussion
- What is an exact equation?
- Solving exact equations

Preliminary Discussion

• Graphs of 2 variable functions

Definition

If *f* is a function of two variables with domain *D*, then the **graph** of *f* is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in *D*.

Preliminary Discussion

• Graphs of 2 variable functions

 $f(x,y) = (x^2 + 3y^2)e^{-x^2 - y^2}$

Preliminary Discussion

• Graphs of 2 variable functions

Preliminary Discussion

- Graphs of 2 variable functions
- Level Curves

Definition

The **level curves** of a function f of two variables are the curves with equations f(x, y) = k, where k is a constant (in the range of f).

Level curves are just traces parallel to the *xy*-plane, projected onto the *xy*-plane.

Preliminary Discussion

- Graphs of 2 variable functions
- Level Curves

Preliminary Discussion

- Graphs of 2 variable functions
- Level Curves
- All implicit Solutions to DEs are level curves to a 2 variable function
- Chain rule to get dy/dx. This is a DE
- Total differential dF
- Every level curve is a solution to the exact equation
- F(x,y)=C are solutions to $\frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy = 0$

Preliminary Discussion

Example 1 Solve the differential equation

$$\frac{dy}{dx} = -\frac{2xy^2 + 1}{2x^2y}.$$

Solution Some of the choices of differential forms corresponding to this equation are

$$(2xy^{2} + 1) dx + 2x^{2}y dy = 0,$$

$$\frac{2xy^{2} + 1}{2x^{2}y} dx + dy = 0,$$

$$dx + \frac{2x^{2}y}{2xy^{2} + 1} dy = 0, \text{ etc.}$$

However, the first form is best for our purposes because it is a total differential of the function $F(x, y) = x^2y^2 + x$:

What is an Exact Equations?

Exact Differential Form

Definition 2. The differential form M(x, y) dx + N(x, y) dy is said to be **exact** in a rectangle *R* if there is a function F(x, y) such that

(4)
$$\frac{\partial F}{\partial x}(x,y) = M(x,y)$$
 and $\frac{\partial F}{\partial y}(x,y) = N(x,y)$

for all (x, y) in R. That is, the total differential of F(x, y) satisfies

$$dF(x, y) = M(x, y) dx + N(x, y) dy$$

If M(x, y) dx + N(x, y) dy is an exact differential form, then the equation

$$M(x, y) dx + N(x, y) dy = 0$$

is called an exact equation.

What is an Exact Equations?

Test for Exactness

Theorem 2. Suppose the first partial derivatives of M(x, y) and N(x, y) are continuous in a rectangle *R*. Then

M(x, y) dx + N(x, y) dy = 0

is an exact equation in R if and only if the compatibility condition

(5) $\frac{\partial M}{\partial y}(x, y) = \frac{\partial N}{\partial x}(x, y)$ holds for all (x, y) in R.[†]

Solving Exact Equations

Method for Solving Exact Equations

(a) If M dx + N dy = 0 is exact, then $\partial F / \partial x = M$. Integrate this last equation with respect to x to get

(11)
$$F(x, y) = \int M(x, y) dx + g(y)$$

- (b) To determine g(y), take the partial derivative with respect to y of both sides of equation (11) and substitute N for $\partial F/\partial y$. We can now solve for g'(y).
- (c) Integrate g'(y) to obtain g(y) up to a numerical constant. Substituting g(y) into equation (11) gives F(x, y).
- (d) The solution to M dx + N dy = 0 is given implicitly by

F(x,y) = C.

(Alternatively, starting with $\partial F/\partial y = N$, the implicit solution can be found by first integrating with respect to *y*; see Example 3.)

Solving Exact Equations

Example 2 Solve $(2xy - \sec^2 x) dx + (x^2 + 2y) dy = 0$.

Solving Exact Equations

Example 3 Solve $(1 + e^x y + xe^x y) dx + (xe^x + 2) dy = 0$.

Solving Exact Equations

Example 4 Show that

(16) $(x + 3x^3 \sin y) dx + (x^4 \cos y) dy = 0$

is *not* exact but that multiplying this equation by the factor x^{-1} yields an exact equation. Use this fact to solve (16).